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We have developed a theory of quasiparticle and phonon energy downconversion in nonequilibrium super-
conductors following the absorption of an energetic photon. This stage of energy downconversion cascade is
important for the production of quasiparticles and is shown to split into two phases. The first is controlled by
the evolution of the phonon distribution while the second is dominated by quasiparticle downconversion. The
relative durations of the two phases and hence the rates of quasiparticle generation depend on material param-
eters, and most common superconductors could be classified into three different groups. For typical supercon-
ductors used for x-ray detection the downconversion cascade was shown to be fast compared to various time
scales in the tunneling regime.

I. INTRODUCTION

The energy downconversion in a superconductor follow-
ing the absorption of an elementary particle or photon has
been the focus of a number of studies. It plays a central role
in the process of particle or photon detection by a supercon-
ducting tunnel junction !STJ", determining the rate of pro-
duction of mobile charges !quasielectrons and quasiholes"
which tunnel in the biased STJ to produce the measured
signal.1–3
It is generally accepted that energy downconversion oc-

curs in three distinct stages. The first stage starts as the par-
ticle energy E0 is released in the form of a fast photoelec-
tron. At this point the electrons and holes possess large
energy and the downconversion process is dominated by
strong electron-electron interactions. Two parallel channels
of downconversion are secondary ionization and cascade
plasmon emission, which have approximately equal cross
sections and are extremely fast. For example, the scale of the
emission of a plasmon of typical energy of 15–20 eV can be
estimated with the use of the Ferrell formula4 to be of the
order of 0.1 fs. Even a photoelectron of energy #10 keV
will decay into plasmons and secondary electrons in less than
0.1 ps. Plasmons are unstable and rapidly decay into
electron-hole pairs5 resulting in strongly interacting electrons
and holes which thermalize to a characteristic energy E1 de-
fining the end of the first stage.
There is considerable disagreement over the actual value

of E1. For instance, Van Vechten and Wood1 suggested that
E1 was reached when the primary photoelectron has lost
enough energy to become indistinguishable from the other
electrons in the conduction band, that is, E1!1 eV. On the
other hand, Ovchinnikov and Kresin6 recently defined E1
!$D , where $D is the Debye energy.
The second stage of energy downconversion takes the

nonequilibrium distribution of electrons and holes down to a
second characteristic energy E2. Over this stage the electron-
phonon scattering becomes stronger than the electron-
electron and the energy downconversion process releases a

large number of phonons. The definition of the end of this
stage also has previously been ambiguous. Van Vechten and
Wood define it as the time when the excitation energy %
degrades to a few meV, while Ovchinnikov and Kresin take
E2 to be of the order of a few & .
Finally, over the third stage, E2!%!& , the mixed distri-

bution of quasiparticles and phonons, which remains
strongly nonequilibrium, evolves to a quasiparticle distribu-
tion centered at the superconducting edge. At the same time
phonons may be lost from the superconducting film into the
substrate or downconverted in amorphous cap layers. This
third stage the system may be regarded as the operational
stage of the process. It lasts much longer than the complete
duration of all the preceding cascade stages which do not last
more than few nanoseconds for a Nb- or Ta-based STJ. Dur-
ing the third stage the nonequilibrium quasiparticles can also
take part in various transport processes; they may diffuse,
tunnel, recombine, be trapped and detrapped, cooled, or
heated. It is essentially this stage that determines the form of
the STJ output. The most commonly used approach to mod-
elling the operational stage is via the Rothwarf-Taylor
equations.7–9
We note that, in spite of broad agreement on the physical

picture of all three downconversion stages, the transitional
energies E1 and E2 have not been uniformly defined by pre-
vious workers, and their exact meaning not clearly discussed.
As a result published estimates of the durations of the vari-
ous stages differ by orders of magnitude. In this paper we
shall discuss the physical processes that determine E1 and E2
and propose clear and consistent definitions.
The main objective of our paper is to develop a full ana-

lytical theory of the second stage E1→E2 of energy down-
conversion in a nonequilibrium superconductor. The impor-
tance of the second stage is that it controls quasiparticle
generation. An exact modelling of this stage of energy down-
conversion has direct implications for the development of
existing and of the next generation lower gap STJ
detectors.10 Various groups have attempted to solve the prob-
lem of quasiparticle production in superconductors in the
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course of energy downconversion process using Monte Carlo
techniques. The important work6 represents an attempt at a
quantitative description of quasiparticle production during
the E1→E2 stage. The fundamental assumption in this work
is that phonons instantly respond to variations in electronic
distribution. Having also assumed that the electronic distri-
bution takes the form of a step function the authors then find
model solution predicting the growth of quasiparticle number
as t1/3. Our own work reported in this paper is a more general
treatment of the problem over a range of validity which does
not have the limitations assumed in Ref. 6.
We will start with a discussion of the physical origin and

formal definition of the characteristic energies E1 and E2. In
Sec. II we will show that the determination of E1 is achieved
by setting the rate of emission of acoustic phonons at this
energy to be equal to the rate of electron-electron collisions
between the energetic electron and the rest of equilibrium
Fermi distribution. We find that this energy is material de-
pendent and is typically much larger than the Debye energy.
As a result, the quasiparticles undergo cascade, that is se-
quential emission of several tens of Debye phonons before
reaching energy $D . Our definition of the low transitional
energy E2"3& recognizes the fact that the generation of
excess quasiparticles stops when the mean quasiparticle en-
ergy reaches the threshold for production of 2& phonons. In
Sec. III we introduce the general kinetic treatment and dis-
cuss the main approximations. We shall find it necessary to
introduce another important characteristic energy, $1, which
is the energy at which the rate of quasiparticle relaxation
with spontaneous emission of phonons becomes equal to the
phonon pair breaking rate. As a result in the range $D!%
!$1 the electron distribution instantly accommodates itself
to match the varying phonon distribution so that the down-
conversion process is controlled by the evolution of the pho-
non distribution N(% ,t).
The analytic solution of the coupled kinetic equations for

interacting quasiparticles and phonons describing energy
downconversion in the $D→$1 range is given in Sec. IV.
Below $1 the evolution of the whole system enters the re-
gime where all temporal variations of quasiparticle and pho-
non distributions are controlled by the electronic component.
In Sec. V we obtain exact analytic solutions for the integral
equation describing the downconversion process in the $1
→E2 phase. The rate of quasiparticle production during this
phase calculated with an exact distribution function is found
to follow a t1/3 law as in Ref. 6. However, the exact distri-
bution function differs significantly from the model steplike

solution of Ref. 6. Indeed, we find that in a majority of
superconductors this final phase is underdeveloped or absent
because $1 falls very close to &. Section VI contains a gen-
eral discussion of the relative importance of the above phases
in different superconductors. We show that the calculated
duration of the phonon and electronic downconversion
phases for all superconductors fall into three distinct classes.
Finally, Sec. VII contains a summary of our results.

II. THE ELECTRON-PHONON DOWNCONVERSION
PHASE E1\!D

Van Vechten and Wood1 define the end of the first stage
of downconversion to occur when the electron energy has
degraded to #1 eV. In Ref. 6 the transition energy is defined
differently as E1!$D with reference to the dominance of
electron-phonon scattering. The lack of a formal definition
for the transition energy creates ambiguity not only in the
classification of downconversion stages but also in separat-
ing clearly the different kinetic processes. We propose that
the most physical definition can be made on the basis of the
relative strengths of electron-electron and electron-phonon
scattering. Thus we define stage one of the general cascade
as that in which dominant electron-electron interactions es-
tablish a strongly nonequilibrium hot electron-hole distribu-
tion continuously decaying until a characteristic energy E1 is
reached. Below this energy, with further thermalization the
electron-electron scattering rate 'ee

#1(%) becomes slower and
electron-phonon scattering with the rate 's

#1(%) takes over.
Thus at E1 we have 'ee

#1(E1)"'s
#1(E1). This equation has

two different solutions, one in the high-energy range, another
very close !much closer than E2) to the superconducting gap.
The reason is that the electron-phonon scattering rate is ap-
proximately a cubic function of energy in the region below
the Debye energy, and is nearly constant above it when the
full phonon spectrum is accessible for phonon emission. On
the other hand, the electron-electron scattering rate is a qua-
dratic function of energy, thus crossing the electron-phonon
relaxation rate curve twice. These solutions are illustrated in
Fig. 1.
Using 's

#1" 1
3 ($D(%/$D)3 for %$$D and 's

#1" 1
3 ($D

for %!$D and the Landau-Pomeranchuk formula for the
electron-electron collision rate 'ee

#1(%)"(%2/)%F)(rs
1/2/

7.96),11 we obtain

E1"2.82$Drs
#1/4" (3 %F

$D
# 1/2. !1"

FIG. 1. Electron-electron !solid line" and
electron-phonon !dashed line" scattering rates
versus quasiparticle energy in typical metal. Ar-
rows indicate the two major spectral intervals of
the second stage of the energy downconversion
cascade.
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Here the parameter rsis the radius of a sphere in atomic units
which encloses one electron charge, and ( is the dimension-
less electron-phonon coupling strength of the order of unity.
In superconductors the electron-phonon scattering strength is
very often conveniently expressed in terms of a characteristic
parameter '0.12 Since the same characteristic time will later
enter the duration of the downconversion cascade and be-
cause it has been tabulated for number of traditional super-
conductors we note the relation between ( and '0 : (
"(1/$D'0)($D /kBTc)3. In the formal definition of '0 the
product '0(kBTc)3 does not depend on critical temperature,
but only on the electron-phonon coupling strength, and there-
fore is a material parameter of the normal metal. The param-
eter under the square root in Eq. !1" is much larger than unity
for all normal metals leading to the strong inequality E1
%$D . In all cases E1&%F . Another important observation
is that at %"E1 the electron-electron collisions are so fast
that there is no need to consider the much slower elastic
scattering due to the presence of disorder. Hence the
electron-electron collisions can be treated as in an ideal
Fermi gas and using the Landau-Pomeranchuk formula is
fully justified.
As downconversion enters the second stage the electrons

start emitting high-frequency phonons with characteristic en-
ergy $D in a long cascade containing several tens of
phonons, until they reach into the last spectral interval below
$D . Each cascade step takes time 's*"'s(E1), and the E1
→$D cascade takes in all a time '1!(3/($D)(E1 /$D).
Thus at the end of the cascade the energy of the phonon
distribution exceeds that of the electronic distribution by a
large factor, which is the number of steps in the E1→$D
phonon emission cascade. Hence the initial state for the next
phase is a narrow phonon distribution peaked at around De-
bye frequency, the so-called ‘‘phonon bubble.’’ This occurs
because the lifetime of Debye phonon 'ph ,D*'ph($D) is
longer than the duration of E1→$D cascade, i.e., 'ph ,D
!'1.
The characteristic parameters for some important super-

conductors supporting this picture are given in Table I. Note
that the phonon bubble model is valid for most of the metals.

III. KINETICS OF THE QUASIPARTICLE-PHONON
!D\E2 CASCADE

To analyze the behavior of our system during the $D
→E2 downconversion phase we adopt a kinetic equation ap-
proach for interacting quasiparticles and phonons.14–18 The
system of coupled kinetic equations for interacting quasipar-
ticles and phonons has the form

+n!, ,x! ,t "
+t #D&n!, ,x! ,t ""Iep!n ", !2"

+N!- ,x! ,t "
+t "Id!N "'Ipe!N "'Q!- ,x! ,t ". !3"

Here n(, ,x! ,t) and N(- ,x! ,t) are distribution functions for
quasiparticles and phonons, respectively, depending on qua-
siparticle energy %"!,2'&2 and phonon energy - and
time. D is the quasiparticle diffusion coefficient, Iep(n),
Id(N), and Ipe(N) are the collision integrals describing, re-
spectively, collisions between quasiparticles and phonons,
phonon loss into the substrate, and collisions between
phonons and quasiparticles. Q is the source term which fol-
lowing the discussions in the preceding section we chose in
the form Q(- ,x! ,t)"aN(- ,0).(x! ).(t) with the constant /
normalized to the energy of the incident photon: a#1E0
"00

$Dd%1(%)%N(% ,0), 1(%) being phonon density of states.
In writing Eq. !3" we ignored electron-electron collisions,
which are not important during the second downconversion
stage. We also neglected anharmonic interactions leading to
phonon-phonon downconversion. For typical anharmonic
potentials the anharmonic decay time for Debye phonons
may be comparable to 'ph ,D , the lifetime with respect to
Cooper pair breaking. However, this quantity scales as %#5

while 'ph(%) varies as %#1. Thus Cooper pair breaking is the
predominant mechanism restricting the energetic phonon
lifetime through almost the whole of the phonon spectrum
even when anharmonic effects are important for Debye
phonons. We also disregard spatial gradient terms in the ki-
netic equation for phonons because the main expansion

TABLE I. The numbers in this table were calculated using the characteristic values for '0 and 'ph from
Ref. 12. For Mo and Hf we calculated these parameters from the data in Ref. 13 assuming the renormalization
parameter Z1(0)"2.

Metal
&
meV

%F
eV

$D
meV E1 /$D $1/&

'0
ns

'ph('ph ,D)
ps

's*
fs

'1
ps

Nb 1.5 6.18 23.7 49 3.5 0.149 4.2 !0.8" 16.7 0.8
Ta 0.7 9.5 20.7 47 4.7 1.78 22. !2.4" 34.6 1.6
Al 0.17 11.63 36.9 67 10.6 110 242 !3.5" 7.1 0.5
Tl 0.37 9.46 6.7 71 2.5 1.76 205 !34.9" 142 10.1
Hg 0.82 8.29 6.2 130 1.0 0.075 135 !52.0" 44.4 5.8
Sn 0.57 10.03 17.2 51 3.2 2.30 110 !11.4" 45.7 2.3
In 0.52 8.60 9.3 68 2.2 0.80 169 !29.1" 75.0 5.1
Pb 1.36 9.37 9.0 45 2.1 0.20 34.0 !14.7" 196 8.8
Zn 0.12 9.39 28.2 32 9.8 780 2310 !30.9" 44.7 1.4
Mo 0.139 9.32 39.6 23 26.8 1.64 2s 420 !4.6" 39 0.9
Hf 0.019 7.32 21.7 27 85.2 217 2s 5200 !14.7" 85 2.3
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mechanism, via the diffusion of electronic excitations, is
much faster than phonon diffusion or quasidiffusion. Finally,
we assume that there are no significant temporal and spatial
variations of the order parameter induced by the photon ab-
sorption. Below we will derive the set of conditions under
which this description is fully justified. In what follows we
will be mostly interested in the total number of quasiparticles
and phonons with fixed energies, rather than in their densi-
ties. Thus we will also consider the kinetic equations which
have been averaged over spatial variables to eliminate diffu-
sion terms. These equations will be written for distributions
of quasiparticle and phonon numbers. The latter will be de-
scribed, respectively, by functions n(, ,t) and N(- ,t) in con-
trast to n(, ,x! ,t) and N(- ,x! ,t) for density distributions.
To describe the $D→E2 cascade of quasiparticles we dis-

regard modifications of the spectrum for quasiparticles in a
superconductor as compared to normal metal, assuming that
E2 is large in comparison with & . Thus we take ,!% and
also replace in expressions for the collision integrals all co-
herence factors 1(&2/%%! by unity. To study the effects of
the cascade we need only linearized collision integrals. The
nonlinearity of the collision integrals reflects the effects of
self-recombination of nonequilibrium quasiparticles, finite
occupancy factors for electronic states, and stimulated emis-
sion of the phonons in electron-phonon interactions. The lat-
ter is of no importance as during a cascade at a sufficiently
small initial photon energy E0 phonon population numbers
remain much smaller than unity. We also assume that densi-
ties of excess quasiparticles remain small. Self-
recombination for %!E2 is unimportant. Indeed, linear
electron-phonon transitions and electron-phonon interactions
via recombination involve phonons with approximately
equal energies. Hence there is no strong discrimination of
these processes with respect to the strength of their cross
sections. The exception to that is the third and final cascade
stage E2→& recombination, which involves phonon with
)-!2& , while scattering occurs with the participation of
much less energetic phonons. Under these conditions strong
discrimination between the two processes of electron-phonon
interaction is present from the very beginning, making it nec-
essary to take into the account the recombination processes.
Using explicit expressions for the collision integrals with

all the simplifications described above we obtain the follow-
ing:

+n!% ,t "
+t "($ %

%

$D d%!!%!#%"2

$D
2 n!%!,t "#

%3

3$D
2 n!% ,t "

'%
%

$D d%!%!2

$D
2 N!%!,t "& , !4"

+N!% ,t "
+t "(1$#%N!% ,t "'2%

%

$D
d%!n!%!,t "&'Q!% ,t ".

!5"

We have introduced (1"(3e/23ph , the dimensionless
electron-phonon coupling constant ()"1) defining the rate
of phonon-electron interactions: 1/'ph(%)"(1% . Here 3e is
the electron density of states at the Fermi level in the normal

metal, while 3ph is the phonon density of states at the Debye
energy in the Debye approximation 3ph"3$D

2 /242c3 (c is
the mean sound velocity". In a superconductor, this rate co-
incides with the phonon pair breaking rate. Very often this
expression is written in terms of a characteristic phonon pair
breaking time for a given superconductor 'ph .12 For %%&
one obtains 1/'ph(%)"(1/4)(1/'ph)(%/&), relating (1 to
'ph . The relation of ( to another material parameter '0 was
noted earlier. The dependence of the quasiparticle scattering
time 's(%) on energy is much stronger than that of the pho-
non pair breaking rate, which has very important implica-
tions. We define the energy $1 as that at which the relax-
ation rate of electrons via emission of phonons is equal to
that via phonon pair breaking, that is, 1

3 ((%3/$D
2 )

"(1%'%"$1 , , i.e., $1"$D!3(1 /("$D!33e/23ph
5$D(pFa0)2(c/vF)&$D . Here pF and a0 are Fermi mo-
mentum and elementary cell length. By definition therefore
$1 determines the energy below which phonons create
electron-hole pairs instead of undergoing any other quasipar-
ticle scattering transitions. For all superconductors in Table I
&$$1&$D so that the $D→E2 cascade spectral region
splits into two parts: ($D→$1) and ($1→E2). As we will
see below, the kinetics of electron-phonon system in the
$D→$1 cascade is very different to that in the $1→E2
cascade, so that they must be consided separately. Thus we
treat what has generally been called the second stage of fast
electron-phonon cascade E1→E2 as three separate phases:

!i" the phase E1→$D finishes with the formation of a
phonon bubble, which sets the initial phonon distribution
source term Q(% ,x! ,t);

!ii" the phase $D→$1 !the phonon downconversion
phase", in which the kinetics of the system of interacting
quasiparticles and phonons are fully controlled by the slowly
varying phonon distribution, while the quasiparticle distribu-
tion readjusts itself swiftly to the local phonon distribution;

!iii" the final phase $1→E2 !the electronic downconver-
sion phase" in which the quasiparticle distribution slowly
changes with the phonons following almost instantly. The
importance of the magnitude of the ratio of rates of elec-
tronic relaxation to electron-hole pair production was
stressed in Refs. 19 and 20.
Figure 1 schematically illustrates our choice of transition

energies for the three different stages of the energy down-
conversion cascade.

IV. PHONON DOWNCONVERSION PHASE: !D\!1

The phonon downconversion phase begins from the pho-
non bubble, the distribution of energetic phonons N(% ,0)
centered at around the Debye energy. Because of very fast
electronic transitions 's(%)&'ph(%) the electron distribution
rapidly accommodates itself to the slowly varying phonon
distribution. Thus to solve Eqs. !5" for this region we may
drop the time derivative of the quasiparticle distribution
function. As a result the remaining integral equation for the
quasiparticle distribution function can be converted by triple
differentiation with respect to energy into a third-order linear
differential equation. Although cumbersome, the solution of
this equation is exact:
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%
%

$D
d%!n!%!,t ""

6
11%%

$D
d%!N!%!,t "( " %!

% # 3

#Re$ " 1#
5i!2
4 # " %!

% # #i!2& ) . !6"

The quasiparticle distribution function can easily be ob-
tained from Eq. !6" by differentiation. In deriving Eq. !6" we
neglect the exponentially small terms of the order of
e#(1$Dt. In what follows we will consider the evolution of
the electron-phonon system at times exceeding the lifetime
of the Debye phonon t!'ph($D). Substitution of this result
into the second of Eqs. !5" yields

+N!% ,t "
+t '(1%N!% ,x! ,t "#

12
11(1%%

$D
d%!N!%!,t " !7"

)( " %!
% # 3#Re$ " 1#

5i!2
4 # " %!

% # #i!2& ) !8"

"Q!% ,x! ,t ". !9"

We begin discussing the properties of the solution of Eq.
!9" by going beyond the limits of its formal applicability
allowing $1→0. Multiplying this equation by the phonon
density of states times phonon energy and integrating over
the phonon spectrum, after simple transformations, results in

+Eph

+t "0, !10"

that is, the energy of the phonon system Eph is conserved
during the evolution process. The physical meaning of this
result is that electron system having absorbed a single quan-
tum of energy from the phonon system instantaneously re-
turns it back in the form of two quanta. The net result is that
electronic excitations act as mediating agents modifying the
phonon spectral distribution and leaving the energy of the
phonon system constant.
This kinetic equation for the phonon distribution function

is similar to the integral equations for the phonon distribution
discussed in detail for various regimes of phonon downcon-
version in dielectrics by.21–23 The important difference is that
in superconductors and normal metals splitting of initial pho-
non into two phonons of lower frequencies takes place
through the mediation of quasiparticles, as the initial phonon
is absorbed to create a pair of quasiparticles. The quasiparti-
cles then thermalize with the emission of the two phonons.
The kernel of our integral equation is determined by the
specific features of electron-phonon interaction in metals,
and is totally different from the anharmonic downconversion
mechanism.
Taking $1 and & to be finite involves also qualitative

differences in comparison with an anharmonic downconver-
sion cascade. The phonon system becomes open and phonon
energy conservation no longer holds true. The reason is that
the breaking of a Cooper pair creates two quasiparticles
whose residual energy after thermalization cannot be smaller
than 2& . In addition, thermalization may not take the quasi-
particle exactly to the superconducting edge but to some en-
ergy below $1 where the quasiparticle lifetime is long. This

process contributes to an extra energy loss from the phonon
system on a time scale comparable to that for the $D→E2
phase. However, for most of the $D→$1 phase the energy
loss from the phonon system is small, and the energy in the
phonon system decreases slowly until the average phonon
energy reaches $1.
In order to solve the integral Eq. !9" we shall exploit the

slow time variation of the phonon energy, expanding it into a
Taylor series, with small parameter being (1$1t&1. The
strong inequality means that we restrict our treatment of the
$D→$1 phase to times smaller than 1/(1$1, the lifetime of
a phonon at the threshold energy $1. This is exactly the time
scale of interest since under any other circumstances there
are no excitations left with energies above $1.
We first analyze the energy partition between the elec-

trons and phonons. Using the solution for quasiparticle dis-
tribution !6" and keeping only the major terms we find

Eel
!! t ""3e%

$1

$D
d%%n!% ,t "!

9
11

3e

$1
2%$1

$D
d%%3N!% ,t ".

!11"
The expression for the total energy in the phonon system,
Eph , in the Debye approximation contains the same integral
so that

Eel
!

Eph
"

93e
113ph

$D
2

$1
2 "

6
11 , !12"

where Eel
! is the energy of the quasiparticle distribution

above the threshold energy $1. We stress that the singular
behavior of the electronic distribution n(%)#%#4 resulting
from our solution given by formula !6", does not allow the
integration to be taken over the whole energy range, because
the integral is divergent at lower integration limit. The mean-
ing of this result is simple: phonons are in control over the
electronic distribution only above the threshold energy $1
and here our solution is valid. Below this energy quasiparti-
cle occupation numbers will always remain finite showing no
singularity !see Sec. V". The continuity of the electronic dis-
tribution across $1 together with the fact that n(%) remains
finite within the range 0$%$$1 means that the electronic
energy is almost equally split between the groups of low
!below $1) and high !above $1) energy excitations.
This results suggests the following picture of the phonon

control phase. Decay of the phonon bubble on the time scale
of the lifetime of a Debye phonon will create a nonequilib-
rium distribution of phonons and quasiparticles with approxi-
mately equal energies. About three quarters of the total en-
ergy is in the form of high-energy excitations, both phonon
and quasiparticles, above $1. Thus the initial production of
the quasiparticles is very rapid and is not described by the
equation in which we have dropped all the terms containing
the small exponent e#(1$Dt. In the subsequent evolution of
the whole system the phonon distribution narrows as higher
energy phonons decay into phonons of energy around $1
while approximately conserving phonon energy. The rapid
response of the electronic system brings about a correspond-
ing transformation of the electronic distribution towards
lower energies. As the mean electronic energy decreases, the
total energy can be maintained due to the generation of extra
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quasiparticles with lower energies. This is the dominant ef-
fect. Next order terms will result in phonons gradually losing
their energy to electrons, providing an addition source of
energy to the electronic system.
To describe the evolution of the phonon system during the

phonon downconversion phase we neglect the variations of
its energy. The energy conserving solution can be taken in
the form of a scaling solution N(% ,t)"6(u)/%4 with u
"(1%t"t/'B(%). The Eph"(3ph /$D

2 )0d%%3N(% ,t)
"(3ph /$D

2 )0du(6(u)/u). Substitution of the phonon distri-
bution in this form yields the following integral equation for
the unknown function 6(u):

6'
d6
du #

12
11%u

7

du!
6!u!"

u!
( 1#Re$ " 1#

5i!2
4 #

)" uu!
# 3'i!2& ) "0. !13"

This integrodifferential equation can be used to derive the
fourth-order linear differential equation for the unknown
function 6(u). Differentiating Eq. !13" one, two, and three
times allows us to exclude the integral terms with three dif-
ferent kernels to obtain

68!'" 1#
3
u #68'3" #

1
u '

2
u2# 6"'

12
u2

6!'
12
u3

6"0.

!14"

No approximations can be made in this equation and no ana-
lytical solution exists, although the asymptotic behavior of 6
can be found. As u→0 the solution has the following form
(c1 ,c2 ,c3 ,c4 are arbitrary constants":

6"c1u'c2u4'i!2'c3u4#i!2'c4" 1#
12
11u ln u # .

!15"

Large u asymptotics can also be found. Using the equation
for 6 one can show that the asymptotic of any solution is
6(u)" f (u)e#u, where f (u) is a nondivergent function of u
as u→7 . The solution with c490 should be excluded, as it
implies a large number of occupied low-energy phonon
states at t"0, leading to phonon energy convergence. This is
physically impossible after phonon bubble decay. Thus c4

"0 and depending on initial conditions the dominant term at
u→0 is linear if c190, i.e., 6(u)#u , or 6(u)#u4 if c1
"0. Thus

N!% ,t ":%#3t!c190 " or %0t4!c1"0 " for $1;%;
1
(1t

,

!16"

N!% ,t ":%#4 exp!#(1%t " for %%
1
(1t

. !17"

We may view these dependences as the evolution of the pho-
non distribution for a given energy interval as a function of
time. In this way, at any energy $1&%&$D the phonon
population numbers rise linearly from zero, reach a maxi-
mum around t!1/(1% and then decay exponentially. The
specific feature of the system under consideration is that, in
contrast to phonon downconversion in insulators, the %#3

‘‘singularity’’ is dragged through to the phonon system. The
phonon distribution soon after the initial instance of time
starts building up around $1 as formulas !17" suggest. The
evolution of the phonon distribution is thus rising the occu-
pation numbers linearly with time at small energies below
the threshold energy separating the occupied from the de-
pleted states which sweeps across the spectrum as #1/(1t .
This type of evolution is shown in Fig. 2. For illustration

we plot the phonon energy densities %3N(% ,t) rather than the
occupation numbers. The solution with c190 yields a step-
like dependence for the phonon energy density with thresh-
old energy %"1/(1t separating the depleted states from the
occupied. While the threshold energy sweeps across the pho-
non spectrum the occupation numbers below it rise linearly
with time so that the area below the %3N(% ,t) remains con-
stant. Solutions with c2 ,c390 show a phonon energy den-
sity that is concentrated mostly within the group %51/(1t ,
decreasing as %3 towards low energies. Again the area below
the %3N(% ,t) curve remains constant in accordance with pho-
non energy conservation. The extent to which the energy in
the phonon system scales as prescribed by one or other of the
above solutions depends on the magnitude of the coefficients
c1 , c2, and c3. The latter is determined by the shape of the
‘‘initial’’ phonon distribution after the decay of the phonon
bubble. Intuitively <and this is confirmed by the shape of the
rapidly decaying terms which we ignored while deriving the
main Eq. !9"= we expect the steplike solution with c190 to
dominate.

FIG. 2. Phonon energy density distributions
%3N(% ,t) at different times during the phonon-
control phase $D⇀$1 : t3!t2!t1!'ph ,D ;
1: t"t1 , 2: t"t2, and 3: t"t3. Solid line: so-
lution with c190,c2"c3"0, dashed line: extra
contribution from solution with c2 ,c390.
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Using the scaling solution to calculate the rate at which
the average energy of phonons decreases, we obtain

>%?"
%
0

$D
d%%3N!% ,t "

%
$1

$D
d%%2N!% ,t "

"$1
1

(1$1t

%
0

7

duu#16!u "

%
(1$1t

7

duu#26!u "
#$1

1
(1$1t

@! t ",

!18"

where @(t) is the dimensionless ratio of the two integrals of
the order of unity, which may contain weak logarithmic de-
pendence on time. It is seen from Eq. !18" that the phonon
mean energy stays above the threshold energy $1 in the
course of the $D→$1 phase, that is, for 0$t&'B($1). The
duration t I of the $D→$1 phase can be estimated therefore
in terms of the lifetime of a phonon at a threshold energy $1.
We will take t I52'($1), because the scaling of mean pho-
non energy as in Eq. !18" suggests that the phonon distribu-
tion shrinks down to $1 in a characteristic time 5'($1),
and it takes another '($1) to sweep across the $1 boundary
into the $1→E2 spectral region.
Finally we consider the rate of quasiparticles production

over the $D→$1 phase. We first integrate the first of the
main kinetic Eqs. !5" over energy. As a result we have an
exact relation

dNqp! t "
dt "2(1Eph! t ". !19"

Integrating this equation yields

Nqp! t ""Nqp!0 "'2(1%
0

t
dt!Eph! t!"

"Nqp!0 "'2
Eph!0 "
$1

(1$1t !20"

5
Eph!0 "
$1

!1'2(1$1t ". !21"

We have arrived in the last expression by estimating
Nqp(0)!Eel(0)/$1!Eph(0)/$1 in accordance with Eq.
!12". The rate of quasiparticle production can be expressed
in a form similar to Eq. !19" in the general case of BCS
superconductor and arbitrary phonon density of states. This
follows directly from the integration of the first of major Eqs.
!3" with the most general expressions for the collision inte-
grals in superconductor. The result is

dNqp! t "
dt "

2423e&

Z1!0 "
%
2&

$D
d$/2!$"

)3ph!$"N!$ ,t "
'ph

'ph
BCS!$"

. !22"

Here Z1(0) is renormalization parameter, /2($)3ph($)
is the electron-phonon coupling strength weighted with pho-
non density of states 3ph($), and 'ph

BCS($) is the phonon
pair breaking time in a BCS superconductor.12 Disregarding
the weak deviation of 1/'ph

BCS($) from linear dependence in
a BCS superconductor 1/'ph(%)"(1% and assuming /2($)
constant, we see that the quasiparticle production rate in
BCS superconductors is determined by the energy in the
phonon system. We will use this result in Sec. VI for the
estimate of number of generated quasiparticles.

V. ELECTRONIC DOWNCONVERSION PHASE: !1\E2

The characteristic time entering the phonon downconver-
sion phase $D→$1 is the lifetime of $1 phonon. The split-
ting of the last remaining phonons across the threshold $1
brings the whole system into a totally different relaxation
regime. The main feature of this regime is that all temporal
variations now are controlled by slower electronic transitions
while on that time scale phonons break Cooper pairs in-
stantly. As a result we may ignore the time derivative of the
phonon distribution function in Eq. !5" since it instantly ac-
commodates itself to the slowly varying distribution of qua-
siparticles. Passage across the threshold $1 results predomi-
nantly in the population of long-lived electronic excitations,
while phonons act as mediators in quasiparticle downconver-
sion resulting in the multiplication of their numbers. During
this stage provided $1%& intensive generation of lower en-
ergy quasiparticles takes place.
To describe the evolution of the quasiparticle and phonon

distributions we solve the second of Eqs. !5" for phonon
distribution function and substitute the result into the first
equation. The result is

$#i-'
(%3

3$D
2 &n!% ,-"#

2(
$D
2 %%

7

d%!%!!%#%"n!%!,-"

"
n0!%"
24 . !23"

Here we introduced the initial distribution for this stage
n0(%), normalized to the energy of the absorbed photon, i.e.,
Ex"3e00

7d%%n0(%) which is value of the distribution at a
reference time t"0, after the system of quasiparticles and
phonons has swept across the boundary energy $1. This nor-
malization is correct when $1%& , and the energy remaining
in the phonon system is small in comparison with that of
quasiparticle system. Since all upconversion processes were
ignored in the kinetic equations during their linearization, an
assumption which is also valid for the phase $1→E2, the
upper limit of the integration in Eq. !23" could be set to 7 .
As with phonon downconversion phase the actual form of
the initial distribution n0(%) is of importance only close to
t"0, while for large t the solution does not significantly
depend on it. Due to the special type of kernel in Eq. !23" the
equation can be reduced to a second-order linear differential
equation. A similar second-order differential equation for
stationary tunnel injection of excess quasiparticles was
solved in Ref. 24. An equation which is identical to Eq. !23"
has also been analyzed in Ref. 6. In this work a model scal-
ing solution was found in the form of a steplike function
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which gave the correct time dependence of the number of
generated quasiparticles. However, the estimates of both the
numbers of the generated quasiparticles and the duration of
the electronic downconversion cascade cannot be derived un-
til the boundary energy E2 has been determined. The choice
of the characteristic time scale for the second stage6 of the
order of &#1($D /&)2 is imprecise.
The solution of Eq. !23" is straightforward:

n!% ,t ""n0!%"exp$#
(%3t

3$D
2 &

'
2(t
$D
2 %%

$1
d%!

)exp$#
(%!3t

3$D
2 & %

%!

$1
d%"%"n0!%"". !24"

The first term in this solution represents the contribution
from the initial distribution of quasiparticles which exponen-
tially dies out, so that the overall solution is not sensitive to
the initial distribution at large values of t. For this reason we
will not consider this contribution further. We introduce
boundary energy %* separating the populated from the empty
states, defined by 's(%*)"t , so that

%*! t ""$1$'!$1"

t &1/3"$D" 3
($Dt

# 1/3. !25"

Here '($1)"'s($1)"'ph($1). The dominant integration
region over d% in Eq. !24" is %;%*(t). For large t the lower
limit % in the second integral over d% is below the range of
concentration of the initial distribution n0(%) which is ex-
pected to be centered at higher energies around $1. As a
result 0%

$1d%%n0(%) hardly depends on % and to high accu-
racy can be replaced by 00

7d%%n0(%), which then cancels
with the same integral in the denominator. The final result is
then

n!% ,t ""
2Ex

3e$1
2 " t

'!$1"
# 2/3A( 13 ,<%/%*! t "=3) , !26"

where AB 13 ,<%/%*(t)=3C is an incomplete gamma function.
Formula !26" allows us to derive the variation of the total
numbers of generated quasiparticles with time during the
electronic downconversion phase. Thus

Nqp! t ""3e% d%n!% ,t ""
2Ex

$1
" t
'!$1"

# 1/3A" 23 # . !27"

Note that the reference energy $1 cancels out from the result
as '#1($1)#$1

3. The time dependence suggested by Eq.
!27" is the same as that derived in Ref. 6. These authors used
an approximate model solution of a kinetic equation similar
to Eq. !23" with two assumptions: !i" the threshold between
the populated and empty states sweeps with time as formula
!25" and !ii" the energy is conserved in the electronic system.
With this assumptions the correct result was obtained in Ref.
6 even though the model steplike distribution function differs
substantially from the exact result, as Fig. 3 illustrates.
Using Eqs. !19" and !27" we obtain

Eph"
Ex

6 " t
'!$1"

# #2/3

A" 23 # , !28"

showing that the phonon energy is shrinking rapidly during
the electronic downconversion stage: Eph&Ex for t
%'($1).
Most significant, however, is the consideration of the tran-

sition energy E2 for this phase of a cascade, which we define
as E2"3& . This definition has simple physical meaning.
The last 2& phonons will be emitted in the process of ther-
malization down to the superconducting edge by generation
of quasiparticles residing at E"3& . Once the quasiparticle
distribution enters the spectral range below E2 the produc-
tion of quasiparticles stops since there are no 2& phonons
left in the system to break extra Cooper pairs. Using this
definition of E2 we can determine the time t II when this
occurs. Since the distribution of quasiparticles is given by
formula !26" at any later time of the $1→E2 stage, t II is
determined by

FIG. 3. 1: the exact solution given by formula
!26". 2: model steplike solution of Ref. 6. Both
solutions were normalized to energy and hence
the areas below the curves and therefore the num-
bers of generated quasiparticles are different.
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Nqp!%$E2 ,t II""" 1#
1
e # <Nqp!%$E2 ,t II"

'3Nqp!%!E2 ,t II"= or !29"

Nqp!%$E2 ,t II""3!e#1 "Nqp!%!E2 ,t II". !30"

The meaning of this condition is that the number of quasi-
particles with energies below E2 reaches (1#1/e) level of
their ultimate number. It has been assumed that each of the
quasiparticle above E2 after thermalization emits a phonon
with %!2& , which breaks Cooper pair, thus tripling their
contribution to the number of quasiparticles. Using Eq. !26"
we rewrite this condition !30" in the form

%
0

E2 /%*(tII)dxA" 13 ,x3#"3!e#1 "%
E2 /%*(tII)

7

dxA" 13 ,x3# .
!31"

The solution of Eq. !31" is t II*'s(4.5&), yielding the
result that the $1→E2 phase takes place in a time two orders
of magnitude faster than the estimate of Ref. 6.
Finally, since the phonon distribution function during the

electronic downconversion phase instantly adjusts itself to
match the electronic distribution we substitute it into Eq.
!22" to obtain a convenient result for the general case of BCS
superconductors and an arbitrary phonon spectrum:

dNqp! t "
dt "23e%

3&

$D
d%1!%"" 1

's!%"
#

1
's!3&" # n!% ,t ",

!32"
where 1(%) is a dimensionless BCS density of states. This
formula which is a result of exact integration of the major
system !3" for the electronic downconversion phase is a di-
rect proof of our choice of the stage-2–stage-3 transition
energy E2"3& .

VI. DISCUSSION

To analyze the types of phonon and quasiparticle down-
conversion processes during the second stage of energy
downconversion E1→E2 we show in Table II the calculated
duration of phonon and quasiparticle downconversion stages
t I and t II for different superconductors. It can be seen that
the metals in the Table II fall into three different groups.
The metals of first group Tl, Hg, Sn, In, and Pb are char-

acterized by the fact that the duration of the phonon down-
conversion stage significantly exceeds the duration of the
potential electronic downconversion stage. The characteristic
time for the whole cascade is tch"t I . For these materials
during the whole of the second stage the production of qua-
siparticles varies approximately linearly with time, thus
Nqp(t):t , reflecting the linear growth in phonon numbers. In
each elementary event after the absorption of a high-energy
phonon by the electron system an electron-hole pair is cre-

ated. Following its rapid relaxation, a pair of low-energy
quasiparticles is created with the remainder of the energy
emitted in the form of pair of phonons. The values for t II for
these materials have no real meaning since 4.5& for all these
materials is above the $1 threshold. For metals of this group
$1 /&#1 and the electronic downconversion phase is essen-
tially absent.
The second group contains predominantly small gap su-

perconductors. The metals in this group are Al, Zn, Mo, and
Hf. In these materials the phonon downconversion phase is
fast compared to the final quasiparticle downconversion
!multiplication" phase. The characteristic time for the cas-
cade is tch"t I't II . The quasiparticle numbers increase lin-
early during the first phase, followed by a much slower rise
during the second phase. Thus nqp(t):t for 0$t$t I and
nqp(t):t1/3 for t I$t$t II . A much slower rate of quasipar-
ticle production over this phase is determined by the corre-
sponding rate of electronic relaxation releasing the energy in
the form of mediating phonons to break extra Cooper pairs.
This tendency is partly compensated by the fact that in each
elementary event the number of quasiparticles triples, that is
the energy of an energetic quasiparticle released in the form
of a productive ()-!2&) phonon creates two extra quasi-
particles.
It is for this group of metals that the production rate for

quasiparticles numbers is described by t1/3 law obtained in
Ref. 6. However, even for these metals the characteristic
time turns out to be much shorter than the estimate given in
Ref. 6 !100 ns for Nb based STJ". These estimates show that
the profile of the signal front due to the cascade processes is
important for smallest gap materials. The whole problem of
the quasiparticle production rate as a function of time in the
initial stages following the absorption of a photon is crucial
for the new generation of STJ’s based on the use of small
gap materials such as Mo and especially Hf. In these mate-
rials tunneling starts long before the quasiparticle relaxation
finishes and the ultimate number of quasiparticle has been
produced.
It is worth mentioning that a similar material classification

with regard to hot-spot formation in superconductors has
been proposed in Refs. 19 and 20, in which the figure of
merit $D

3 /Tc
2 simply measures the ratio ($1 /&)3. Indeed,

($1 /&)3"($D /&)3(33e/23ph)"($D
3 /&2)(3e/6N), where

N is number of atoms per cm3. This ratio strongly depends
on ($D

3 /&2)($D
3 /Tc

2), while the factor 3e/6N is a relatively
weak function of the material parameters.
Finally, the materials of the third group of widely used

superconductors including Nb and Ta fall into an intermedi-
ate range where E2!$1 and hence the electronic downcon-
version phase is underdeveloped. Under these conditions the
electronic downconversion cascade is short and the time de-
pendence of the quasiparticle numbers does not approach the
asymptotic t1/3 law, which arises only for long cascades, that
is $1%E2. Instead, starting from the later phases of the pho-

TABLE II. Calculated duration of phonon and quasiparticle downconversion stages in superconductors.

Metal Tl Hg Sn In Pb Nb Ta Al Zn Mo Hf
t I ps 360 270 170 320 66 6.0 26.0 140 1.4 ns 100 400
t II ps 14.6 0.3 21.8 7.4 1.0 1.15 15.5 1.3 ns 10 ns 16 ns 2.1 2s
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non downconversion $D→$1 cascade the initial linear time
dependence of quasiparticle numbers on time decreases in
the transition range around $1, but fails to reach the t1/3 law.
This group of materials includes also Nb/Al and Ta/Al prox-
imized structures which are now being extensively studied.
While electrons !holes" cascade across the high-energy range
E1→$D→$1 spectral renormalization due to the proximity
effect is unimportant. One consequence of the Nb!Ta"/Al
bilayers is that part of the cascade occurs in one material and
part in another. This happens because at the characteristic
electron velocity of (5 –10))107 cm/s and for layer widths
of 100 nm it takes only 100–200 fs to pass across one layer
and enter the other. Thus although the absorption is more
likely to occur in Nb!Ta" the excitation region spreads into
the Al layer long before the E1→$D thermalization cascade
of Debye phonons is completed. Thus the first phase $D
→$1 !phonon downconversion" starts from the initial distri-
bution of phonons !phonon bubble" which is present in both
layers. In what follows the phonon downconversion phase
develops following the scenario which has been discussed.
The only difference is that both quasiparticles and phonons
can be exchanged between the two materials during this pro-
cess. This can hardly bring about any qualitative changes as
the rates of electron-phonon scattering and pair breaking at
the same energy above the Fermi level are similar. With
typical thicknesses of the films forming a bilayer of the order
of few coherence lengths the superconducting gap stays con-
stant across the bilayer.25,26 However, densities of states for
quasiparticles depend on spatial coordinates and therefore
both scattering and pair breaking times must be properly
averaged. Figure 4 shows the dependence of densities of
states in Ta/Al device, 100 nm Ta and 55 nm Al, &g
"0.45 meV, at four different locations as a typical example,
where &g is the value of the gap in the proximized structure.
The variation of scattering and pair breaking times versus

an energy for Ta/Al device Ta01 borrowed from Ref. 27 is
shown on Fig. 5. As seen from Fig. 4, $155.4&Ta58.3&g
53.73 meV, t I520 ps which is very similar to the value of
t I for an unproximized Ta device, t II"'(4.5&g)!80 ps.
Here &Ta is superconducting gap in the bulk Ta. This par-

ticular Ta/Al device is characterized by a relatively long
electron downconversion cascade t II54t I and hence it ap-
proaches the second group of materials. The Nb/Al devices
and Ta/Al with different degrees of proximization all fall
between unproximized Nb!Ta" and the above example.
There exists one very specific feature of the proximized
structures which is absent in the BCS superconductors. The
Cooper pair breaking time of Fig. 4 exhibits a dramatic rise
on approach to 2&g . Above 2&Ta it reproduces closely the
behavior in bulk Ta. Below 2&Ta it is intermediate between
bulk Al value !240 ps" and bulk Ta value. However, when
the phonon energy approaches 2&g the pair breaking time
rapidly rises to large values. The reason for this is the shape
of the density of states on Fig. 4, which smoothly goes to
zero around the gap, while for BCS superconductors the in-
finite density of states at the edge causes the pair breaking
time discontinuity at 2& . This feature contributes to a dis-
tinctive signature of the proximized structures with respect to
electronic downconversion phase. The lifetimes of the pro-
ductive phonons !in Fig. 5 below 2&Ta) turn out to be com-
parable to or even larger than t II . As a result there appears a
significant extra flattening of the time dependence of the
numbers of the generated quasiparticles at the very end of the
$1→E2 cascade as compared to the unproximized structure
with similar t I and t II .
We will address now the important question of how much

energy D is needed to produce a single quasiparticle !al-
though of course they are created in pairs". The number of
quasiparticles ultimately generated can be expressed in the
form

Nqp! t"7""
Ex

D
. !33"

So far the choice of D has been determined by Monte
Carlo simulations giving the value D!1.75&3. From our
considerations it follows that this number is not universal,
because for superconductors belonging to different groups in
our classification scheme the energy partition between elec-
trons and phonon is different by the time that stage 2 fin-
ishes. We will consider the two extreme cases separately. In
metals of the third group—low gap superconductors–neither

FIG. 4. Density of states versus quasiparticle energy in a Ta/Al
bilayer. The solid line in Al is at the barrier, while the dashed line
corresponds to the Al-Ta interface. In Ta the density of states is
almost position independent.

FIG. 5. Quasiparticle relaxation !dashed line" and phonon pair
breaking time !solid line" versus energy in Ta01.
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a steplike solution of Ref. 6 nor the improved formula !26"
are adequate, as they are both model solutions obtained in
the limit &→0, disregarding the specific features of a super-
conductor in comparison to normal metal. Formula !32" pro-
vides the answer. Using the approximate distribution !26" in
the exact formula !32" is justified as integration starts at 3& ,
where all corrections to normal-metal expressions do not ex-
ceed 5%. Using formulas !26" and !32" yields

D

&
"
5
12 " %37dx !x3#1 "

x4!x2#1 #
#1

51.65. !34"

Now let us consider the superconductors of the first group
with $1#1. In these superconductors the electronic down-
conversion phase is absent. To make an estimate of D we
approximate the phonon energy density by a steplike func-
tion as shown on Fig. 2:

%3N!% ,t ""EEx(1t
$D
2

3ph
F" 1(1t #% # , !35"

where F(x) is the step function and E$1 is the fraction of
photon energy immediately after the decay of Debye
phonons. Simple calculation with the use of formulas !22"
and !35" yields

D"
1
2E

"$1

& # 2
$1

&
#1

. !36"

This result shows that D gets larger as $1 /&→1 and is
significantly larger than for the metals of the third group. For
equal energy partition between electrons and phonons at the
beginning of the phonon downconversion phase, E" 1

2 and
for a typical $1 /&!2 we obtain D!4. There are the two
complications making this result only qualitatively correct.
The first is that the partition parameter E is not a constant,
but decreases as phonons lose energy; this is clear from the
discussions in Sec. IV. Thus the effective value of E is even
smaller making the quasiparticle yield even poorer. Second,
all superconductors of the first group are ‘‘soft’’ with small
values of the Debye energy and relatively small ratios
$D /& . As a result $1 /$D falls between 0.1 and 0.13 !Tl,
Hg,In" and reaches even 0.32 for Pb, forcing phonon distri-
butions to evolve across the non-Debye part of spectrum. For
all materials of this group, the phonon spectrum extends
about twice as far as their Debye energy. Also a Debye ap-
proximation underestimates the phonon density of states at
small energies. For all materials of the first group this effect
has serious consequences as the larger phonon density of
states at this energy range causes the electrons to relax faster.
This in turn takes $1 towards lower values as compared to
the estimates in Table I. The physical meaning of the dete-
rioration of the quasiparticle yield is simple. Indeed, the 1/%4
singularity in the electronic distribution formed during this
phase of a cascade !see Sec. IV" is a reflection of the accu-
mulation of quasiparticles in the states with low energy
where they are subjected to less phonon scattering and spend
effectively a much longer time. This effect does not sig-
nificantly depend on the electronic spectrum and is equally

present in a BCS superconductor and in a normal metal. This
singularity in turn drags the 1/%3 singularity in the phonon
distribution. As a result immediately after the beginning
of the $D→$1 phase the phonon distribution builds up
around $1, i.e., at low energies, with a large percentage of
phonons falling below 2& , the smaller $1 being more disas-
trous for the production of quasiparticles. This feature of the
phonon distribution persists during the whole duration of this
phase, contributing to the enhanced losses from the system in
contrast to the third group materials. The result given by
formula !36" is consistent with experimental observa-
tions.19,20 This interpretation of quasiparticle yield in first
group materials does not invoke the formation of the hot
spot—the highly nonequilibrium phenomenon potentially oc-
curring at strong excitation levels !large photon energy". It
will still hold true at low excitation levels beyond the thresh-
old for the formation of a hot spot or any other strongly
nonlinear effects.
So far we avoided discussing the expansion of the excita-

tion volume in the course of the downconversion cascade.
For the phonon downconversion phase this was justified by
referring to slow phonon group velocities. For the second
electronic downconversion stage the quasiparticle diffusion
can be easily accounted for. The solutions which we ob-
tained for distribution functions !24" and !26" demonstrate
that as long as the system of interacting quasiparticles and
phonons remains linear the account of the diffusion is
straightforward, as all temporal and spatial processes run in-
dependently. As a result expressions for the densities can be
obtained by multiplying the solutions !24" and !26" by
the factor (1/442r0

2wDt)0dr!F(r0#r)exp<#(r!#r!)2/4Dt= ,
where the initial distribution has been taken to occupy a
cylindrical volume around the absorption site of radius r0
height equal to the electrode width w. We may use this
model to derive an important condition for the downconver-
sion process in nonequilibrium superconductors. The basic
equation of BCS theory for the order parameter for the ho-
mogeneous system is

1"(̃%
0

$D d,
%

<1#2n!,"= , !37"

where (̃ is effective electron-phonon coupling constant.
When n(,)→0 its solution yields &→&(0), the value of
gap at zero temperature. Excess quasiparticles can signifi-
cantly suppress the gap or even locally destroy superconduc-
tivity. The nonequilibrium state of a superconductor that we
consider in this paper differs from the homogeneous case and
in general one should derive the equation for the order pa-
rameter accounting for the spatial variations. For a simple
estimate we assume that the excited spot is confined within
the cylinder with the radius 2!DtII and height w and that
within this cylinder the quasiparticles distribution is homo-
geneous. The distribution function n(,) can be taken as a
solution of Eq. !26" at the end of the electronic downconver-
sion phase t"tch , when the production of quasiparticles
stops:
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Although AB 13 ,<%/%*(t II)=3C enters the distribution as a re-
sult of solution of the kinetic equations for normal metal it
does not contain any singularities at %→0 !see Fig. 2" and
indeed might represent an appropriate distribution for the
case of a suppressed gap. Numerically AB 13 ,<%/%*(t II)=3C
$A( 13 ). Thus we arrive at the conclusion that, depending on
the value of a parameter G , the following possibilities can be
encountered:

!i" G&1: weak excitation level;
!ii" G51: moderate excitation level;
!iii" G!GcH1: strong excitation level.
In the regime !i" the excitation level is so weak that the

order parameter is homogeneous and the system remains per-
fectly linear on a time scale of the duration of the second
cascade stage E1→E2. In regime !iii" of strong excitation the
energy deposition is so large that by the time the production
of quasiparticles ceases the superconductivity within the ex-
citation spot has been destroyed. The most interesting is !ii".
The main feature of this regime is a deep suppression of the
gap within the excited spot. As a result, there are two pos-
sible paths for subsequent evolution, depending on the speed
of diffusion out of the excited spot compared to the rate of
trapping of the quasiparticles from the states above the bulk
gap due to thermalization down to the suppressed gap. The
first corresponds to faster diffusion. In this case after deep
excursion the gap relaxes to its bulk value before significant
numbers of quasiparticles have been trapped at the sup-
pressed edge. Although the regime remains quasilinear none-
theless the numbers of the quasiparticles and correspond-
ingly the fraction of photon energy lost for production of
quasiparticles can be different from the regime !i". The sec-
ond scenario is that of slower diffusion and simultaneous
faster trapping. If trapping of a significant number of quasi-
particles onto the states near the locally suppressed supercon-
ducting edge occurs before the quasiparticles with energies
above the bulk edge diffuse out of the excitation volume,
then the formation of an autolocalized state becomes fea-
sible. The fast initial production of the quasiparticles within
the small excitation volume causes deep local suppression of
a gap. The subsequent trapping of quasiparticles by this po-
tential well will autolock the system of quasiparticles within
the excited spot. The trapped quasiparticles will have no
chance to move laterally as they encounter the regions of
wider gap and undergo Andreev reflections, keeping them
inside the excited spot. Their enhanced numbers will main-
tain the locally suppressed gap forming the metastable ‘‘hot
spot’’ which will survive until the self-recombination within
the spot destroys the excess quasiparticles and brings about
the gap relaxation.

The values of the parameter G at Ex"6000 eV is GNb
epi

"0.02 for an epitaxial base film thickness of 100 nm and
diffusion coefficient D5600 cm2/s corresponding to the
value of the diffusion coefficient in normal state as measured
from residual resistivity ratio !RRR" measurements:
RRR"90.28 For a polycrystalline top film of 200 nm with
factor 20 slower diffusion GNb

poli50.4, giving an absorption in
the top film closer to a moderate excitation level. For a typi-
cal Ta film of 100 nm thickness we obtain GTa

epi"0.01 mainly
because of the smaller gap and weaker electron-phonon cou-
pling in Ta. As these values suggest, all Nb- and Ta-based
STJ devices in the hard x-ray range up to 6 KeV operate in
weak excitation regime.
In superconductors belonging to the first group where the

electronic phase is not developed the expansion occurs dur-
ing the phonon control phase. The phonon diffusion coeffi-
cient is extremely small. Nonetheless, as follows from the
results given by formula !12" in Sec. IV the amount of en-
ergy in the electronic system rises very rapidly to a finite
value at the beginning of the $D⇀$1 phase. Thus the ex-
pansion is again due to the electronic excitations. A very
rough measure of the possibility of formation of a hot spot
will be given by the same sort of formula as Eq. !38" but
with the electronic distribution function derived from Eq.
!6". The result can be expressed as

G!
1

3e$1

Ex

D

1
44DtIw

. !39"

This estimate shows that for superconductors of the first
group the threshold for hot spot formation is not easier to
achieve as compared to materials of the third group, since the
shorter duration of the phase is fully compensated by the
production of fewer quasiparticles.

VII. CONCLUSION

In summary, we have demonstrated that the quasiparticle-
phonon downconversion cascade in nonequilibrium super-
conductor starts at hot electron energies E1 far larger than
the Debye energy $D . As a result, the hot quasiparticles
undergo a very long cascade down to %$$D with extremely
fast emission of a large #E1 /$D%1 number of Debye
phonons. Quasiparticle-phonon downconversion across the
remaining spectral range below E1 starts from a highly non-
equilibrium state where most of the energy has been accu-
mulated in the form of Debye phonons. It first proceeds as a
spectral transformation of the phonon and electron systems
which are controlled by the $D→$1 phonon downconver-
sion phase, followed by the second phase $1→E2 of elec-
tronic downconversion. We found the analytical solutions of
the coupled kinetic equations for the interacting quasiparti-
cles and phonons describing both phases of $D→E2 cascade
and derived characteristic times of the downconversion pro-
cess together with specific time dependences of the numbers
of generated quasiparticles during different cascade phases.
We have shown that different superconductors exhibit differ-
ent cascade patterns depending on specific combination of
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their parameters and introduced a classification scheme. The
quasiparticle yield has been shown to be different for differ-
ent groups. For low gap superconductors the mean energy
needed to produce one quasiparticle is close to 1.7& , while
for superconductors of first group such universality is bro-

ken, quasiparticle yield is poor and strongly depends on ma-
terial parameters. The excitation level in the Nb- and Ta-
based superconducting tunneling structures widely used for
x-ray detection as well as for other superconductors of the
Table I remains weak even in the hard x-ray region.
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